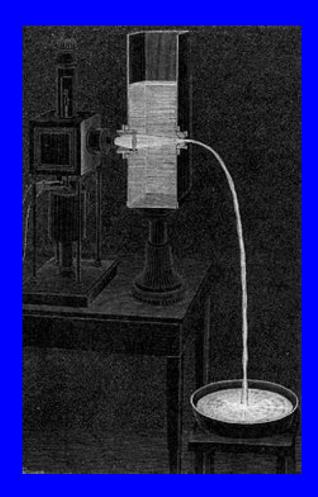

Chapter 3

Optical Fibers – (Multimode) Basics

- > How to conduct light?
- > Attenuation (衰减)?
- > Dispersion (色散)?
- > Bandwidth (带宽)?

History

- > Although glass fibers were made in the 1920s, their use became practical in the 1950s when the cladding layer was used.
- > In 1966, 高錕 suggested to reduce the loss of optical fiber for fiber-optic communications.
- > In 1970, Corning Ltd. fabricated the step-index optical fiber.
- > In 1972, the attenuation of optical fiber was improved from 20dB/km to 4 dB/km with the improvement of material and fabication procedure.
- > Further progress resulted by 1979, the loss of fiber was reduced to be only 0.2dB/km near the 1.55-um spectral region.



3.1 How optical fibers conduct light

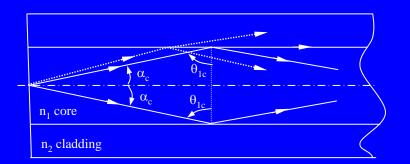
Daniel Colladon first described this "light fountain" or "light pipe" in an 1842 article titled *On the reflections of a ray of light inside a parabolic liquid stream*. This particular illustration comes from a later article by Colladon, in 1884.

What's the principle?

◆ Step-Index Fiber (阶跃光纤) Bare Fiber: Fiber Core + Cladding + Coating

Core: Doped silica $\rightarrow n_1$

Cladding: Pure $SiO_2 \rightarrow n_2$ Coating: Plastic or carbon


To achieve TIR: $n_1 > n_2$

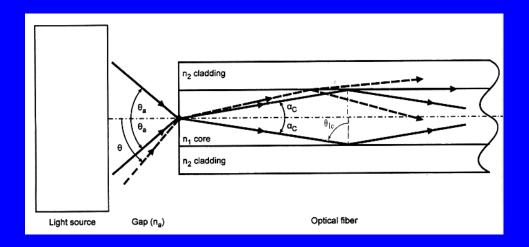
◆ Total Internal Reflection (全内反射)

Critical incident angle: θ_{1c} (临界入射角)

Critical propagation angle: α_c (临界传播角)

To save light inside an optical fiber, the propagation angle of rays should have

$$\alpha_z \leq \alpha_c$$


From Snell's Law, one has:

$$\sin \theta_{1c} = n_2/n_1$$
, and $\cos \alpha_c = n_2/n_1$.

Thus, one can derive:

$$a_c = \sin^{-1} \sqrt{[1 - (n_2/n_1)^2]}$$

◆ Launching the Light

Critical incident angle: $\sin \theta_{1c} = \frac{n_2}{n_1}$

Critical propagation angle: $\alpha_C = \sin^{-1} \sqrt{1 - \left(\frac{n_2}{n_1}\right)^2}$

-> Acceptance angle (接收角): θ_a or $2\theta_a$

$$\sin \theta_a = n_1 \sin \alpha_C$$

◆ Numerical Aperture (数值孔径)

 $NA = \sin \theta_a$: Describe the ability of an optical fiber to gather light from a source, and preserve this light insider the fiber.

$$= n_1 \sin(\alpha_c)$$

$$= n_1 \sqrt{(1 - (\frac{n_1}{n_2})^2)} = \sqrt{(n_1)^2 - (n_2)^2}$$

 $n = (n_1 + n_2)/2$: Average refractive index.

 $\Delta = (n_1 - n_2)/n$: Relative difference of the refractive indexes.

$$\rightarrow NA = n\sqrt{2\Delta}$$

: n_1 and n_2 are not important in themselves, but only in their average and relative difference.

Example:

Type-1:

$$n_1 = 1.48$$

$$n_2 = 1.46$$

$$\frac{\Delta n}{n} = 1\%$$

$$\Theta_{1C} = 80.57^{\circ}$$

$$\alpha_{c} = 9.43^{\circ}$$

$$\Theta_a = 14.033^{\circ}$$

NA = 0.2425

Type-2:

$$n_1 = 1.495$$

$$n_2 \approx 1.402$$

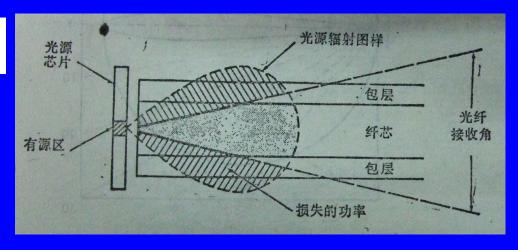
$$\frac{\Delta n}{n} \approx 6\%$$

$$\Theta_{1C} = 69.68^{\circ}$$

$$\alpha_{c} = 20.32^{\circ}$$

$$\Theta_a = 31.27^{\circ}$$

$$NA = 0.5192$$


◆ Measurement of NA

-> for a fiber launched by a LED source (Lambertian source: 朗伯光源)

$$P(\theta) = P_0 \cos \theta$$

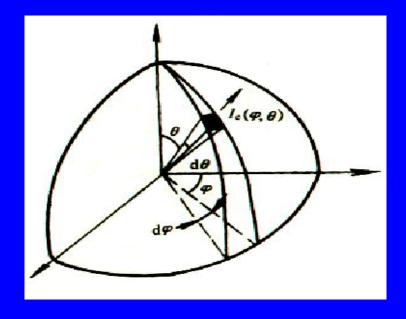
$$\frac{P_{in}}{P_0} = \frac{\int_0^{2\pi} \int_0^{\theta_a} P_0 \cos \theta \sin \theta d\theta d\phi}{\int_0^{2\pi} \int_0^{\frac{\pi}{2}} P_0 \cos \theta \sin \theta d\theta d\phi} = \frac{\sin^2 \theta_a}{\sin^2 \frac{\pi}{2}} = (NA)^2$$

$$-> NA = \sqrt{P_{in}/P_0}$$

点光源发出球面波, Poynting矢量表达为

$$\mathbf{S}(r,\theta,\phi) = B(\theta,\phi) \frac{1}{r^2} \mathbf{r}$$

其中 (r, θ, ϕ) 为球坐标,设点源位于坐标原点, $1/r^2$ 来自能量守恒要求,r为点源到场点连线单位矢量。设球坐标系下曲面 A方程为


$$r = r(\theta, \phi), \ \theta \in [\theta_1, \theta_2], \ \phi \in [\phi_1, \phi_2]$$

则曲面A上流过的能流通量为

$$\Phi = \iint_{A} \mathbf{S}(r, \theta, \phi) \cdot \mathbf{n} dA = \iint_{A} B(\theta, \phi) \frac{1}{r^{2}} dA_{n}$$

 $dA_n = r^2 \sin\theta d\theta d\phi \quad (r \sin\theta d\phi \times rd\theta)$

$$\Phi = \int_{\theta_1}^{\theta_2} \int_{\phi_1}^{\phi_2} B(\theta, \phi) \sin \theta d\theta d\phi$$

Question:

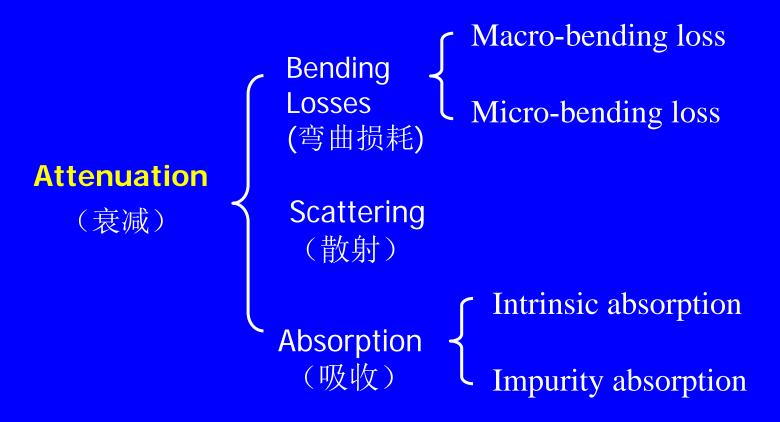
Numerical aperture, NA, is the characteristic of an optical fiber to gather light from a source.

When the core diameter is larger, NA should be

- a. larger
- b. smaller
- c. the same

Nobel Prize in Physics

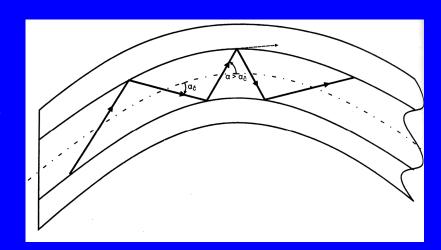
In 1965, Charles K. Kao with Hockham concluded that the fundamental limitation for glass light attenuation is below 20 dR/km (decibels per kilometer, is a measure of the attenuation of a signal over a distance), which is a key threshold value for optical communications.



Attenuation !!

3.2 Attenuation

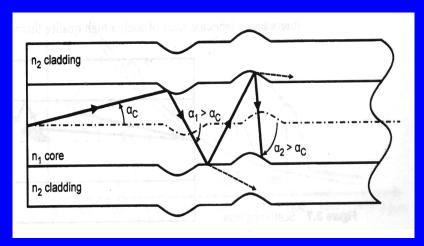
: power loss for reasons other than failure to achieve total internal reflection.


Bending loss

- -> The flexibility of optical fiber is an advantage, but it brings some problems too!
- -> It will induce the failure of TIR.

• Macro-bending:

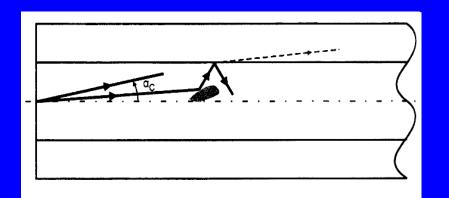
The curvature of the entire fiber changes the propagation angle to be more than critical angle.


-> minimum bending radius: 19mm or 13mm

• Micro-bending:

The microconvexity or microdent will change the propagation directions.

-> coating or external force



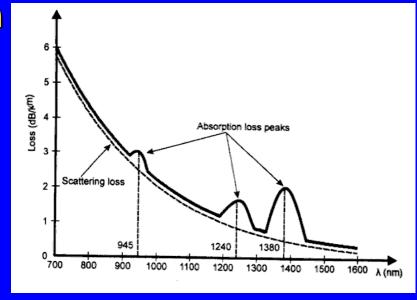
Scattering loss

Change of propagation direction induced by small changes in the core's refractive index

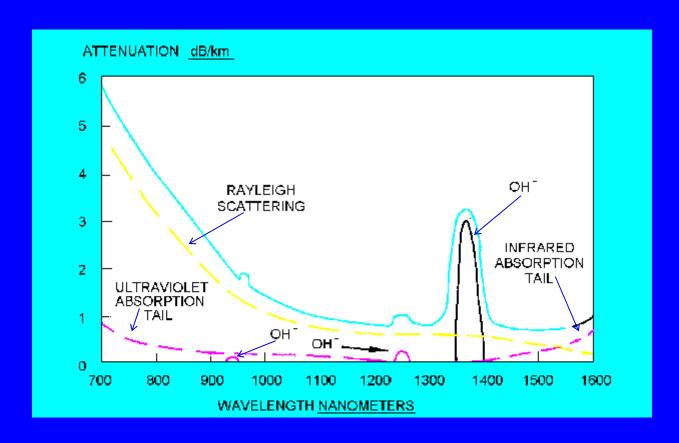
-> induce the failure of TIR again

Rayleigh scattering : $\infty \lambda^{-4}$

(Material) Absorption


OH- molecules: 3 absorption peaks

Transparent windows:


850 nm: 4 dB/km

1300nm: 0.5 dB/km

1550 nm: 0.3 dB/km

♦ Attenuation of Optical Fibers

->: Dry fiber (无水光纤), or all-wave fiber (全波光纤), is optical fiber which hydroxide anion is eliminated.

Calculation of Total Attenuation

● Loss in linear or decibels (分贝): (fiber, devices, ...)

$$Loss = \frac{P_{out}}{P_{in}}$$

$$Loss(dB) = -10\log_{10}(\frac{P_{out}}{P_{in}}) \quad \text{: notice the minus sign!!}$$

Attenuation (loss) per fiber-length: (fiber!)
 (also called "Attenuation", cable-loss factor, attenuation coefficient)

$$A(dB/km) = \frac{loss(dB)}{fiberlength(km)}$$

$$P_{out} = P_{in} \times 10^{-AL/10}$$

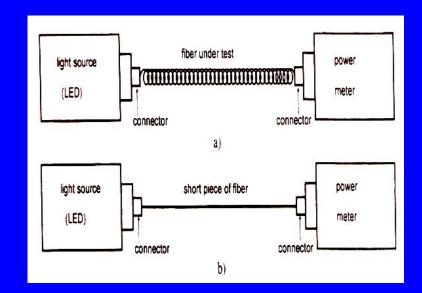
Maximum transmission distance

$$L = (\frac{10}{A}) \log_{10}(\frac{P_{in}}{P_{out}})$$

- -> the maximum transmission distance imposed by attenuation,
- \rightarrow the minimum value of P_{out} is determined by the sensitivity of the receiver
- Power unit dBm: choose 1mW as the reference power

$$P_{out}(dBm) = +10\log(P_{out}/1mW)$$

(line 4, p. 56)


P55, Paragraph 2 from the second section: "First, it is a key....."

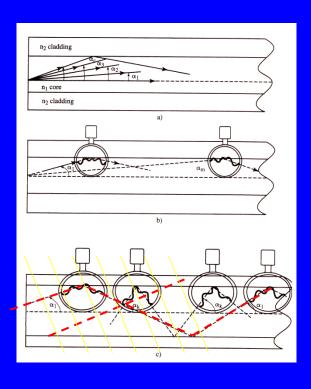
Measuring Attenuation

Cut Method (截断法)

Measuring fiber attenuation with connection losses

Measuring connection ——losses

$$Loss(dB) = P_{out}(dBm) - P_{in}(dBm)$$


-> Measure the powers when the device under the test is "in and out".

More about Cut Method (截断法):

- -> The precision of this method is mainly determined by two factors:
 - (a) How accuracy you can reproduce connection losses
- (b) How negligible is the attenuation introduced by a short piece of fiber.
- -> When measuring attenuation in a multimode fiber, special care should be taken to use a light beam filling the entire cross-sectional area of the core (called overfilled launching) to make sure that (all possible modes are excited).

3.3 Intermodal and Chromatic Dispersion

◆ Modes (模式)

- -> Modes as different beams with different propagation distances.
- -> Different beams experience different phase shifts (1. Different phase fronts.2. Reflection phase shift.)
- -> Optical fiber supports only those modes that complete the full zigzag at the same repeated phase (stable!). The other one is not stable.

Wave α_1 reproduces itself after the whole cycle of propagation, but wave α_k does not.

More about Modes:

- -> These different beams with different propagation angles are called modes.
- -> We distinguish modes by their propagating angles and we use the word order to designate the specific mode.
- -> The smaller the mode's propagating angle, the lower the order of the mode.
- -> The zero-order mode is also called fundamental mode.
- -> The mode traveling at critical propagation angle is the highest order mode possible for this fiber.

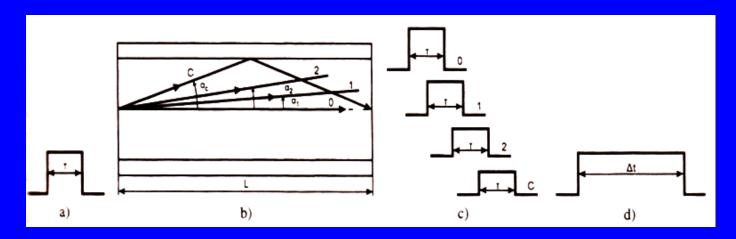
◆ V-number (V参数, 归一化截止频率)

(Normalized cut-off frequency, characteristic waveguide parameter)

$$V = \frac{\pi d}{\lambda} NA$$

 $V = \frac{\pi d}{\lambda} NA$ -> More light can be accommodated for larger core diameter d, larger NA and shorter wave core diameter d, larger NA and shorter wavelength

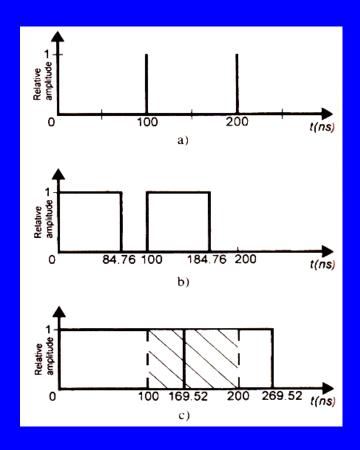
$$V = \frac{\pi d}{\lambda} \sqrt{(n_1)^2 - (n_2)^2}$$
 -> n_1 , n_2 : refractive indexes of the core and cladding


For a large V number (>20), the number of modes can be estimated by

$$\boxtimes$$
 Step-index fiber: $N = \frac{V^2}{2}$

$$\boxtimes$$
 Graded-index fiber: $N = V^2 / 4$

♦ Intermodal dispersion (模间色散)

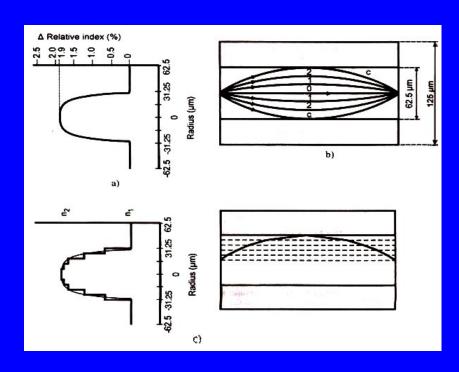

(different modes travels at different speeds)

- a) Original pulse; b) Modes in an optical fiber; c) Pluses delivered by an individual mode;
- d) Resulting pulse
- -> The zero-order (fundamental) mode needs time : $t_0 = \frac{L}{v}$, $v = c/n_1$;
- -> The highest-order (critical) mode needs time : $t_c = \frac{L}{v \cos \alpha_c}$ ($\cos \alpha_c = \frac{n_2}{n_1}$)
- ☑ Pulse spreading (脉冲展宽) stemming from intermodal dispersion:

$$\Delta t_{SI} = t_c - t_0 = \frac{L}{2cn_2} (NA)^2$$
 : $NA = 0.275$, $n_1 = 1.487 \Rightarrow \Delta t/L = 84.76$ ns/km

♦ Restriction on Bit Rate

a) Input pulses;


Bit rate : 10Mbit/s, =>time cycle duration : 100 ns

- b) Pulses after 1 km transmission

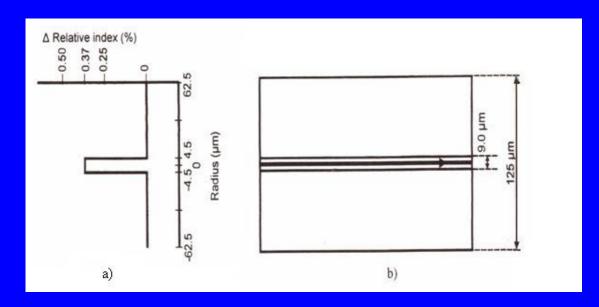
 Pulse spreading: $\Delta t = 84.76 \text{ ns}$
- c) Pulses after 2 km transmission

- -> The maximum bit rate (for a transmission of 1 km) $= 1/\Delta t = 11.8 \text{Mbit/s}.$
- -> Larger L => larger Δt => smaller bit rate.

◆ First Solution: Graded-index Fiber (渐变光纤)

- a) Refractive index profile
- b) Mode propagation
- c) Principle of action (fabrication) of graded index multimode fiber.
- -> The refractive index of fiber core varies with the radius;
- -> The beam traveling the farthest distance has the highest velocity and the beam traveling the shortest distance propagates at the slowest velocity.

Calculating pulse spreading for graded-index fiber

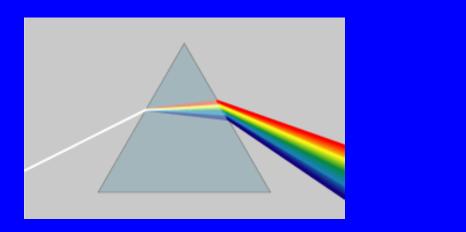

$$\Delta t_{GI} = (LN_1\Delta^2)/(8c)$$
 * where N₁ is core group index of refraction -> n_1 is a variable, i.e. $n_1(r)$

$$\Delta t_{GI} = L(NA)^4$$
 where approximation $n_1 = N_1$ was used.

$$\Delta t_{GI} = \Delta t_{SI} \left(\frac{\Delta}{8} \right)$$
: A graded-index fiber has a modal dispersion $\Delta/8$ times less than that of a step-index fiber.

^{*} Joseph C. Palais, Fiber Optic Communications, 4th ed., Englewood Cliffs, N.J.: Prentice Hall, 1998.

◆ A Better Solution: Single-mode Fiber (单模光纤)



Step-index <u>Single Mode</u> Optical fiber

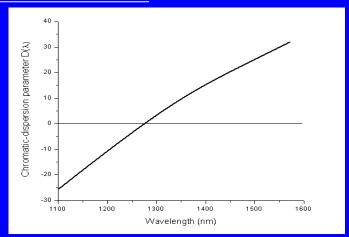
- a) Refractive index profile
- b) Mode propagation

- -> Typically, the core diameter d is 8.3 um and the relative index Δ is 0.37%. (for multimode fiber, d is around 62.5 um, and Δ is 2%)
- -> A real single-mode condition is : $V \le 2.405$

◆ Chromatic Dispersion (色度色散)

- -> Refractive index depends on wavelength, $n = n(\lambda)$
- -> The velocity of light within a material is: v = c/n
- -> The light with different wavelength travels along the fiber at different velocities.

Why?


-> They will arrive at the receiver end at different times, even if all of these beams propagates along the same path.

Calculating pulse spreading

$$\Delta t_{chrom} = D(\lambda) \cdot L \cdot \Delta \lambda$$

where $D(\lambda)$ is the chromatic-dispersion parameter (色散参数) in ps/nm.km.

$$D(\lambda) = \frac{S_0}{4} \left[\lambda - \frac{\lambda_0^4}{\lambda^3}\right]$$

- $-> \lambda_0$ is the zero-dispersion wavelength: the wavelength at which $D(\lambda)$ is zero.
- -> S_0 is the zero-dispersion slope in ps/(nm².km).
- Total pulse spreading caused by modal and chromatic dispersion

$$\Delta t_{total} = \sqrt{(\Delta t_{\text{modal}}^2 + \Delta t_{\text{chrom}}^2)}$$

3.4 Bit Rate (比特率) and Bandwidth (带宽)

• **Bit rate:** The number of bits that can be transmitted per second over a channel.

$$BR = \frac{1}{T}(Hz)$$
 : T—time interval between adjacent signals.

• **Bandwidth:** The frequency range within which a signal can be transmitted without significant deterioration.

$$BW = BR$$
 or, $BW = BR/2$

which depends on the line codes, such as the non-return to zero (NZR) etc..

Dispersion and Bit Rate

for a practical standpoint, a coefficient 1/4 is general accepted in the industry.

$$BR < 1/(4\Delta t)$$
 i.e. $T > 4\Delta t$

-> for a step-index multimode fiber, one has

$$BR_{SI} = 1/(4\Delta t_{SI}) = c/(4Ln_1\Delta) = cn_2/(2LNA^2)$$

-> for a graded-index multimode fiber, one has

$$BR_{GI} = 2c / (N_1 L \Delta^2)$$

-> If considering chromatic dispersion, one has

$$BR_{chrom} = 1/(4D(\lambda)L\Delta\lambda)$$

-> If considering the total bit rate, one has

$$BR_{total} = 1/4\sqrt{(\Delta t_{\text{modal}}^2 + \Delta t_{\text{chrom}}^2)}$$

◆ Reading a data sheet

Data sheet maybe different from each other, but four parts must be included.

- "Optical Characteristics" section
- "Geometric Characteristics" section
- "Environmental Specifications" section
- "Mechanical Specifications" section

2013-03-27

33

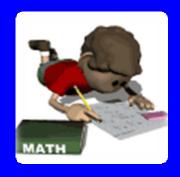
◆ Homeworks

- **♦3.7**, 3.12, 3.21, 3.22, 3.25, 3.29, 3.30, 3.33, 3.47
- 3.7 The core refractive index is 1.4513 and the cladding index is 1.4468. What is (1) the critical propagation angle? (2) the acceptance angle? (3) the numerical aperture?
- 3.12 For a specific fiber, NA = 0.2375 and n1 = 1.4860. Find n_2 (n cladding).
- 3.21 What does the term "transparent windows" mean? Specify three peak wavelengths for the transparent windows in modern optical fibers.
- 3.22 An optical fiber with attenuation of 0.25 dB/km is used for 20-km transmission. The light power launched into the fiber is 2mW. What is the output power?
- 3.25 Find the maximum transmission distance for a fiber link with an attenuation of 0.3 dB/km if the power launched in is 3mW and the receiver sensitivity is $100 \mu W$.

◆ Homeworks

- 3.29 What is the number of modes for a graded-index fiber if d is 50 µm, NA is 0.200, and the operating wavelength is 1300 nm?
- 3.30 How many modes can support a step-index optical fiber whose $d=8.3 \mu$ m, $n_{1\text{core}}=1.4513$, $n_{2\text{clad}}=1.4468$, and $\lambda=1550$ nm?
- 3.33 Consider modal dispersion. For a step-index multimode fiber with NA=0.200 and $n_1=1.486$: a) Evaluate pulse spreading per 1 km length; b) Calculate the maximum number of bits per second that can be transmitted over 1 km.
- 3.47 A graded-index fiber has n1 = 1.486 and NA = 0.200. What is the bit rate for a 1-km link?

Reference:


- 1. Keiser, Gerd., <u>Optical fiber communications</u>, Publisher Boston, Mass.: McGraw-Hill, c2000.
- 2. G. P. Agrawal, <u>Fiber-optic communication systems</u>, Publisher New York: John Wiley, c2002
- 3. Haus, Hermann A., <u>Waves and fields in optoelectronics</u>, Publisher Englewood Cliffs, NJ: Prentice-Hall, c1984.

Contact:

Dr. Shiming Gao

Tel: 88206516-211

E-mail: gaosm@zju.edu.cn

